Clustering categorical data streams

نویسندگان

  • Zengyou He
  • Xiaofei Xu
  • Shengchun Deng
  • Joshua Zhexue Huang
چکیده

The data stream model has been defined for new classes of applications involving massive data being generated at a fast pace. Web click stream analysis and detection of network intrusions are two examples. Cluster analysis on data streams becomes more difficult, because the data objects in a data stream must be accessed in order and can be read only once or few times with limited resources. Recently, a few clustering algorithms have been developed for analyzing numeric data streams. However, to our knowledge to date, no algorithm exists for clustering categorical data streams. In this paper, we propose an efficient clustering algorithm for analyzing categorical data streams. It has been proved that the proposed algorithm uses small memory footprints. We provide empirical analysis on the performance of the algorithm in clustering both synthetic and real data streams

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting the Change of Clustering Structure in Categorical Data Streams

Analyzing clustering structures in data streams can provide critical information for making decision in realtime. Most research has been focused on clustering algorithms for data streams. We argue that, more importantly, we need to monitor the change of clustering structure online. In this paper, we present a framework for detecting the change of critical clustering structure in categorical dat...

متن کامل

A Framework for Clustering Massive Text and Categorical Data Streams

Many applications such as news group filtering, text crawling, and document organization require real time clustering and segmentation of text data records. The categorical data stream clustering problem also has a number of applications to the problems of customer segmentation and real time trend analysis. We will present an online approach for clustering massive text and categorical data stre...

متن کامل

Incremental entropy-based clustering on categorical data streams with concept drift

Clustering on categorical data streams is a relatively new field that has not received as much attention as static data and numerical data streams. One of the main difficulties in categorical data analysis is lacking in an appropriate way to define the similarity or dissimilarity measure on data. In this paper, we propose three dissimilarity measures: a point-cluster dissimilarity measure (base...

متن کامل

ارائه یک الگوریتم خوشه بندی برای داده های دسته ای با ترکیب معیارها

Clustering is one of the main techniques in data mining. Clustering is a process that classifies data set into groups. In clustering, the data in a cluster are the closest to each other and the data in two different clusters have the most difference. Clustering algorithms are divided into two categories according to the type of data: Clustering algorithms for numerical data and clustering algor...

متن کامل

Hcluwin: an Algorithm for Clustering Heterogeneous Data Streams over Sliding Windows

Many applications in web usage mining, such as business intelligence and usage characterization, require effective and efficient techniques to discover the users with similar usage patterns and the web pages with correlate contents in the physical world. Clustering click streams can help to achieve the goal. Despite the high processing rate, the existing methods for clustering click streams ove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Meth. in Science and Engineering

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011